
techpaper

lending protocol v1
Konrad Wierzbik Lukasz Lakomy

konrad.wierzbik@gmail.com lukasz.jan.lakomy@gmail.com

Abstract

In this paper, we describe the architecture of the abax lending protocol v1.

1 Introduction

The Abax Lending Protocol v1 is a smart contract sys-
tem that allows users to seamlessly lend and borrow cryp-
tocurrencies using the power of blockchain. The protocol
is created with Rust ink! for substrate-based blockchains
that support contract-pallet. Utilizing state-of-the-art liq-
uidity pools, the protocol provides a peer-to-contract re-
lationship for lending and borrowing PSP22 tokens with
ease and efficiency.

Lenders can deposit their PSP22 tokens into the liq-
uidity pool, and any user who provides adequate collateral
can borrow the deposited tokens. Loans can be instantly
accessed as long as there is available liquidity. Borrowers
are subject to constantly accumulating interest on their
loans, which is distributed to the lenders, creating a mu-
tually beneficial experience for all parties involved.

The interest rate for borrowers and lenders is deter-
mined algorithmically to ensure fairness and efficiency.
Borrowers’ interest rates are based on the ratio of borrowed
funds to supplied funds at a given time. As funds are bor-
rowed from the pool, the available funds decrease, which
raises the borrow interest rate. Lenders receive the gener-
ated income in the form of interest rates. This approach
guarantees a balanced and secure lending and borrowing
experience.

In addition, the protocol offers users various market
rules to choose from. For instance, the standard market
rule permits borrowing and using most assets as collateral,
while the Stablecoin market only allows borrowing and us-
ing stablecoins as collateral. This is implemented to man-
age risks and facilitate more efficient borrowing of assets
collateralized by other assets that have a strong correlation
in their prices. This feature enables users to customize
their borrowing experience according to their individual
requirements.

1.1 General overview

At the core of the protocol, there is the Lending Pool
contract which efficiently manages all deposits, debts, and
interest rate calculations for all registered assets in the
Lending Pool market. Users have the ability to easily de-
posit their collateral by calling the deposit function in the
contract and transferring funds from the user to the con-
tract. The protocol allows users to configure less risky as-
sets as collateral to secure any potential debts. Users can
borrow deposited funds at any time, provided that they
pledge a sufficient amount of collateral.

The amount that can be borrowed is determined by
the asset prices and two specific factors for each asset, the
Collateral Coefficient (smaller than 1) and Debt Co-
efficient(greater than 1). These coefficients depend on the
market rule a user has chosen. The Collateral Power of
the user is calculated as the sum of deposited collateral
values multiplied by the Collateral Coefficient, while the
Debt Power is determined as the sum of borrowed as-
set values multiplied by the asset’s borrow coefficient. To
ensure safety for all parties, the user must manage his col-
laterals and debts to not allow for his Debt Power power to
exceed Collateral Power or he will expose himself for liqui-
dation. The majority of assets can be borrowed at variable
rates. For now, stable rates are not available.

The Abax Lending Protocol ensures the safety of users’
positions by allowing anyone to monitor for price fluctu-
ations that could result in liquidation. Liquidation of a
given user occurs when the user’s Collateral Power drops
below the user’s Debt Power. In such cases, a user’s po-
sition is considered undercollateralized, and any party has
the opportunity to repay the debt in exchange for the col-
lateral. The collateral received by the liquidator is equal
in value to the repaid debt, plus an additional liquidation
penalty paid by the user.

Figure 1: High-level overview of the protocol’s supply/debt token flow

1.2 Formal definitions

1

ReserveData
A data structure that stores most of the data linked to one of the registered assets.
ReserveData is stored in the Mapping<AccountID(asset),ReserveData>.

variable/parameter data type symbol describtion

id u32
The unique number assigned to the ReserveData
and the corresponding registered asset. Denotes
the position of data associated with this asset in Vectors.

activated bool
Denoting if any actions with the use of the underlying asset
are possible.

freezed bool
Denotes if deposit and borrow actions on underlying asset
are blocked.

decimal multiplayer u128
The number of how many absolute tokens make one token.
For example: 1AZERO = 1012.

interest rate model e24 [u128;7] M [1− 7]
Slope of millisecond percentage rate for different
utilization intervals:
0%-50%-60%-70%-80%-90%-95%-100%.

maximal total supply
Option
<Balance>

ML
The maximal allowed total supply. Deposits that would
increase total supply above this value will be reverted.
If None then the total supply is uncapped.

maximal total debt
Option
<Balance>

MD

The maximal allowed total variable debt. Borrows that
would increase total variable debt above this value
will be reverted.
If None then the total variable debt is uncapped.

minimal collateral Balance mC

The minimal deposit of a user for which the user can use
the asset as collateral. If redeem decreases the user
deposit under this value, then the asset will be automatically
removed from user collaterals. Liquidate can bring collateral
under this value.

minimal variable debt Balance mD
The minimal (non-zero) debt a user can have after borrow
and redeem. Liquidate can bring debt under this value.

income for suppliers
part e6

u128 I
Part of the interest, paid by borrowers, distributed
among suppliers

.

flash loan fee e6 u128 F Fee took during the flash loan.

token price e8 u128 Price of the underlying asset in USD.

total supply Balance L Sum of all deposits and accumulated earn interests.

cumulative earn rate
index e18

u128 CIL

An index used to keep track of accumulated interest.
Whenever the reserve is updated it is multiplied by
the accumulated interest rate.

current earn rate e24 u128 RL
Current earn millisecond percentage rate.
1024 = 100% Millisecond Percentage Rate.

total debt Balance DV
Sum of all variable debts together with the accumulated
interests.

cumulative debt rate
index e18

Balance CIV

An index used to keep track of accumulated interest.
Whenever the reserve is updated it is multiplied by
the accumulated interest rate.

current debt rate e24 u128 RV
Current variable debt millisecond percentage rate.
1024 = 100% Millisecond Percentage Rate.

update timestamp Timestamp TR Timestamp of the last ReserveData update.

aToken address AccountId AccoundId of the aToken. PSP22 represents users’ deposits.

vToken address AccountId AccoundId of the vToken. PSP22 represents users’ debts.

2

Asset Rules
Data structures that store rules for borrowing a given asset at a given market rules.
Asset Rules are stored in Mapping<u64(market rule id), Vec<Option<AssetRule>>.
Position in the vector corresponds to the id in Reserve Data linked to the asset.

variable/parameter data type symbol description

collateral coefficient e6 Option<u128> CC
Coefficient used for Collateral Power calculation.
If None then the asset can not be used as collateral.

debt coefficient e6 Option<u128> DC
Coefficient used for Borrow Power calculation.
If None then the asset can not be borrowed.

penalty e6 u128 P Coefficient used to calculate penalty during liquidation.

UserConfig
Data structure storing information about which assets the user has deposited, the user uses as collateral,
and is borrowing. It also stores the market rule id user has chosen.

variable/parameter data type symbol description

deposits Bitmap128
Each bit says if the user has deposited a given asset.
The bit which corresponds to asset A is at ReserveData(A).id
position counting from the right.

collaterals Option<u128>
Each bit says if the user is using the asset as collateral.
The bit which corresponds to asset A is at ReserveData(A).id
position counting from the right.

borrows u128
Each bit says if the user is borrowing the asset.
The bit which corresponds to asset A is at ReserveData(A).id
position counting from the right.

market rule id u64 id Index of the market rule a user has chosen.

UserReserveData
Data structures that store all data linked to the pair of one of the registered assets
and one of the users. UserReserveData is stored
in the Mapping<(AccountId(asset), AccountId(user)),UserReserveData>.

variable/parameter data type symbol description

supplied Balance s
The amount supplied by the user together with
the earned interest.

debt Balance dV
The amount of debt at a variable rate together with the
debt interest.

applied cumulative supply
rate index e18

Balance AIL An index to keep track of user earn interest.

applied cumulative
debt rate
index e18

Balance AIV An index used to keep track of user debt interest.

use as collateral bool Denoting if a user is using the underlying asset as collateral.

Additional Variables Additional variables used for calculations and the following explanations.

variable/parameter data type symbol description
current timestamp Timestamp T The current timestamp.

collateral power e6 u128 CP Variable that represents users’ debt power.

debt power e6 u128 DP Variable that represents users used borrow power

health factor e6 u128 HF Ratio of collateral power to debt power.

utilization rate e6 u128 U Ratio of total debt to liquidity.

income per millisecond e24 u256 Q Sum of variable and stable debt interests paid per millisecond.

3

After defining variables and parameters that appear in
the protocol we can specify relations between them and
some of the formulas used during calculations1. The for-
mulas given below do not take into account differences in
the variable’s representation precision. For example, debt
coefficient e6 is a ”real debt coefficient” multiplied by
106, while current earn rate 24 is a ”real current earn
rate” multiplied by 1024. Such representations are used in
the contract because substrate blockchains don’t support
point numbers.

Utilization rate U is defined as:

U =
DV

L
. (1)

The formula for user’s u Collateral Power CP is defined
as:

CP (u) =
∑

a∈Col(u)

s(a, u) · CC(a, id(u)), (2)

where Col(u) is a set of user’s collaterals and CC(a, id(u)
isCollateral Coefficient depending on a and market rule
id chosen by the user id(u). The formula for user’s u Debt
Power DP is defined as:

DP (u) =
∑

a∈Bor(u)

dv(a, u) ·DC(a, id(u)), (3)

where Bor(u) is a set of assets that the user is borrowing
and DC(a, id(u) is Debt Coefficient depending on a and
market rule id chosen by the user id(u). Health Facotr
is defined as:

HF (u) =
CP (u)

DP (u)
. (4)

Income Per Milisecond is defined as:

Q = DV ·RV (5)

2 Lending Protocol Architecture

2.1 Lending Pool

• The Lending Pool contract is responsible for handling
the protocol’s core functionalities realizing Lending-
Pool Trait:

– deposit - depositing PSP22 tokens to the proto-
col and receiving proof of deposit PSP22 tokens
- aToken.

– redeem - redeeming PSP22 tokens for the corre-
sponding proof of deposit PSP22 tokens - aToken.

– set as collateral - setting some of deposited
PSP22 tokens as a collateral for future borrows.

– choose market rule - choosing a market rule
user wants to use.

– borrow - borrowing PSP22 tokens with vari-
able(stable) interest rate and receiving a proof
of debt PSP55 token - vToken(sToken).

– repay - repaying PSP22 tokens while burning
proof of debt PSP55 tokens.

– liquidate - repaying the debt of an undercollat-
eralized user and receiving some of his collateral.

• To take care of less used reserves contract can be ex-
tended by LendingPoolMaintain Trait:

– accumulate interest - update ReserveData in-
cluding current rates and cumulative indexes.

• As a Lending Pool Contract can possess a lot of liquid-
ity, it can be a provider of flash loans by implementing
LendingPoolFlashLoan Trait:

– flash loan -allows users to perform flash loans
- borrow PSP22 tokens, make use of them, and
repay within a single transaction.

• Finally, the contract may be managed with Lending-
PoolManage Trait. The functions in this trait should
be access controlled:

– register asset - add a new underlying asset
to the Lending Pool and create ReserveData and
adjust its parameters.

– set reserve is active - change the boolean
ReserveData parameter active to turn on/off all
actions that use the reserve.

– set reserve is freezed - change the boolean
ReserveData parameter freezed to turn on/off
deposits and borrows.

– set reserve parameters - change interest rate
model, collateral and borrow coefficient, stable
rate base, penalty, income for suppliers, and flash
loan fee.

– add market rule - adds new market rules under
unique id.

– modify asset rule - modifies asset rule for a
given asset at a given market rule.

– take protocol income - transfer protocol in-
come to a given account.

• Upon performing the above operations the Lending
Pool contract emits appropriate events.

• To perform the above the contract holds main chunk
of the storage and performs various computations
(updating user reserve data, reserve borrow/supply
indexes, etc).

• Lending Pool serves as a storage for PSP22 proxies
AToken, VToken (see ??).

1More formulas are found in section (3)

4

2.1.1 Storage

The core storage structures of the Lending Pool storage
are Reserves Data, UserConfig, UserReserve Data,
andMarketRule which is Vec<Option<AssetRules>>.
On top of it the Registered Asset Vec<AccountId>
stores a list of all assets registered to the contract. The
order in the list corresponds to the asset ids in Reserve-
Datas.

As mentioned above, Abax Lending Pool keeps
track of reserve datas by storing information about them
in structures called ReserveData. ReserveData is
uniquely linked to the registered PSP22 token (under-
lying token). These structures are stored in mapping
<asset’s address => ReserveData>.

The Market Rules are stored in mapping <market

rule id => Market Rule> and contain a list of As-
setRules that determine each asset’s parameters for a
given market.

Furthermore, Abax Lending Pool stores user
data in structs called UserConfig and UserReserves-
Data. They track the state corresponding to the
user’s general position and the pair (underlying as-
set, user). They account for all operations performed
by the users. These structures are stored in map-
pings <user’s address => UserConfig> and <(asset’s

address, user’s address) => UserReserveData>

2.2 Abax Tokens

From the user’s perspective, Abax Supply Token (ATo-
ken) behaves like a regular PSP22 token. It does allow
for the usage of all of the actions specified by the PSP22
trait meaning the users can treat and use it like any other
PSP22-compliant token. Having said that there are imple-
mentation differences.

• AToken does not store information about user bal-
ances. Nevertheless, it does keep track of user al-
lowances allowing them to perform all of the opera-
tions implied by implementing the PSP22 trait.

Abax Variable Debt Token (VToken) derive some of the
PSP22 trait behavior with one key difference. Similarly
to AToken, they keep track of allowances. However, to
perform the transfer the receiver has to approve the trans-
ferred amount (in a PSP22 scenario it is the sender that
does have to approve said amount). This is due to VToken
representing debt (a representation of a ”negative value”)
and not a possession (a ”positive value”). Having said all
of the above, users may transfer not only proof of supply
but also proof of debt.

2.3 Lending Pool and Abax Token inter-
actions

Upon executing functions that perform a change in
Abax Token storage-proxy state held by the Lending Pool
contract (actions like deposit, redeem, borrow, repay

or liquidate) Lending Pool performs a call to Abax To-
kens to emit transfer events. For example, when a user
makes a deposit of an asset the supply variable in the
corresponding UserReserveData is increased. Exactly
the same field represents the balance of proof of deposit
PSP22 token - AToken. In other words, we can say that
deposit mints Atokens but, the balance is not stored in
AToken PSP22 token storage but in LendingPool. To re-
main in compliance with the PSP22 standard, on mint ac-
tion, the transfer event inside PSP22 Contract should be
emitted. To do so, LendingPool calls an accessed control
function in AToken to emit an appropriate event.

Similarly, upon performing transfer operations invoked
by a call to the PSP22 trait’s ‘transfer‘ function, Abax To-
ken contracts perform a call to the Lending Pool contract.
The callee does perform all of the checks and updates
necessary to approve the transfer. Then it does update
its state and returns to the Abax Token contract (caller)
which emits a transfer event.

2.4 Configuration of the Lending Pool

The configuration of the Lending Pool contract is avail-
able only for permitted users. To restrict the calls to func-
tions from LendingPoolManage trait we use the Access-
Control module with the following roles:

• ASSET LISTING ADMIN - may call register

asset.

• PARAMETERS ADMIN - may call set reserve

parameters, add market rule, and modify asset

rule.

• EMERGENCY ADMIN - may call set reserve is

active and set reserve is freezed.

• GLOBAL ADMIN - may call any functions
from LendingPoolManage expect take protocol

income.

• TREASURY - may call take protocol income.

• ROLE ADMIN - manages which Account has which
role.

3 Interest Rates

3.1 Interest Rate Model

3.1.1 Debt Rate

The current debt rate [Millisecond Percentage Rate]
for each asset is determined by the interest rate model

5

and the utilization rate [∈ [0, 1]] of the given asset in the
following way:

RV (M,U) =



M [1] · U U ∈ [0, 0.5),

M [1] + 10(M [2]−M [1])(U − 0.5) U ∈ [0.5, 0.6),

M [2] + 10(M [3]−M [2])(U − 0.6) U ∈ [0.6, 0.7),

M [3] + 10(M [4]−M [3])(U − 0.7) U ∈ [0.7, 0.8),

M [4] + 10(M [5]−M [4])(U − 0.8) U ∈ [0.8, 0.9),

M [5] + 20(M [6]−M [5])(U − 0.9) U ∈ [0.9, 0.95),

M [6] + 20(M [7]−M [6])(U − 0.95) U ∈ [0.95, 1),

M [7] · U U ∈ [1, 1].

(6)

3.1.2 Earn Rate

The current earn interest rate RL is calculated
based on the income generated from variable and stable
debts interest Q, supplied liquidity L, and interest for
suppliers part I:

RL =
Q · I
L

. (7)

Figure 2: Possible Debt and Earn rates for Utilization Rate
U ∈ (0, 0.9) .

Figure 3: Possible Debt and Earn rates for Utilization Rate
U ∈ (0.9, 1)

3.2 Accounting Interests

Accounting of interests is made in every function (like
deposit) that modifies ReserveData or UserReserveData
in two steps. First, the interest is accumulated based on
the previous interest rates. Then Data is modified accord-
ing to the called function (deposit). Eventually, new in-
terest rates are calculated and they will be used in the next
contract call for interest accumulation.

The accumulation of interests for every user is done
any time ReserveData parameter cumulative debt rate
index and cumulative earn rate index are updated.

3.2.1 Accumulate Interest

accumulate interest operation modifies the Reserve-
Data variables: total supply L, cumulative earn rate
index CIL, total debt DV , cumulative debt rate in-
dex CIV , and update timestamp TR based on the cur-
rent interest rate RL, current debt rate RV and cur-
rent timestamp T in the following way:

L(T) = L(TR)(1 +RL(T − TR)), (8)

CIL(T) = CIL(TR)(1 +RL(T − TR)), (9)

DV (T) = DV (TR)(1 +RL(T − TR)), (10)

CIV (T) = CIV (TR)(1 +RL(T − TR)), (11)

TR(T) = T. (12)

accumulate user interest operation uses already
accumulated ReserveData to update UserReserveData
variables: supplied s, variable debt dV , applied cu-
mulative earn rate index AIL, and applied cumula-
tive debt rate index AIV in the following way:

s(new) = s(old) · CIL
AIL

, (13)

AIL(new) = CIL, (14)

dV (new) = dV (old) ·
CIV
AIV

, (15)

AIV (new) = CIV , (16)

3.2.2 Recalculate Current Rates

recalculate current rates is an operation on a Re-
serveData that updates the current earn rate RL and
current debt rate RV as expressed in 3.1

6

4 Collateral

4.1 Market Rules

The Market rule is a set of rules that determine what
assets users can use as collateral, which ones can be bor-
rowed, and how the user’s Health Factor is being cal-
culated. Information about each of the registered assets
are stored in Market Rule list entries Option<Asset
Rules>. If the option is None then the asset is not ac-
cessible within this rule at all. The default Market Rule
has the id 0 and is set for every user upon first interaction
with Abax Protocol. This setting can be changed by
each user by calling choose market rule. This design, of
having multiple possible borrowing rules, allows the pro-
tocol to provide more efficiency for its users by specifying
many possible rules.

4.2 Liquidation

Liquidate will work only if the liquidated user’s
Health Factor is below one. The liquidator specifies two

assets, one that is borrowed (asset to repay - AR) and one
that is used as collateral (asset to take - AT) by the liqui-
dated user. Based on penalty parameters PT and PR in
Asset Rules, of both AR and AT, and current asset prices
VR and VT the maximal amount of AT to be taken during
liquidation AT is calculated based on the repaid amount
of AR AR:

AT =
VR

VT
· (1 + PT + PR)AR. (17)

As long as the Collateral Power of an asset to take CPT

and the Debt Power of an asset to repay DPR satisfy the
following conditions:

CPT < 1− PT and DPR > 1 + PR (18)

then one can show that after repaying AR amount of AR
and taking AT amount of AT the Health Factor of the
liquidated user will increase.

7

5 Lending Pool interactions

Since all of the core interactions (deposit, redeem, borrow and repay) have much in common regarding things such as
the usage of storage, events emitting, or security checks they perform, they were structured in a way so they follow the
same execution pattern.

Figure 4: High-level structure of core interaction procedure flow.

8

5.1 Deposit

Figure 5: Deposit flow diagram.

9

5.2 Redeem

Figure 6: Redeem flow diagram.

10

5.3 Borrow

Figure 7: Borrow flow diagram.

11

5.4 Repay

Figure 8: Repay flow diagram.

12

5.5 Flash Loan

Figure 9: Flash loan flow diagram

13

	Introduction
	General overview
	Formal definitions

	Lending Protocol Architecture
	Lending Pool
	Storage

	Abax Tokens
	Lending Pool and Abax Token interactions
	Configuration of the Lending Pool

	Interest Rates
	Interest Rate Model
	Debt Rate
	Earn Rate

	Accounting Interests
	Accumulate Interest
	Recalculate Current Rates

	Collateral
	Market Rules
	Liquidation

	Lending Pool interactions
	Deposit
	Redeem
	Borrow
	Repay
	Flash Loan

